Journal of Organometallic Chemistry, 312 (1986) 155–165 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBER POLYGERMANE

XVI *. SYNTHESE α, ω -DICHLORIERTER POLYGERMANE Cl(Ph₂Ge)_nCl (n = 2,3,4) DURCH GERMYLEN-EINSCHUB

KARL HÄBERLE ** und MARTIN DRÄGER*

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann-Joachim-Becher-Weg 24, D-6500 Mainz (B.R.D.)

(Eingegangen den 4. April 1986)

Summary

The germylene $Ph_2Ge|$ of Ph_2GeHCl and NEt_3 inserts in excess Ph_2GeHCl and forms polygermanes $Cl(Ph_2Ge)_nH$. This one-pot reaction and subsequent chlorination to $Cl(Ph_2Ge)_nCl$ has been optimized. Increasing amounts of NEt_3 step up the yields of higher polygermanes. The ¹³C NMR phenyl signals for C(ipso) shift to low field with increasing chain length. The crystal structures of $Cl(Ph_2Ge)_{3,4}Cl$ (R =0.072 and 0.087) have been determined. The position of $Cl(Ph_2Ge)_4Cl$ is split off by disorder (main molecule 82%, side molecule 18%). Two crystallographically different molecules of the trigermane are present; the $Cl-Ge_3-Cl$ chain contains *anti-gauche* and *gauche-gauche* conformation respectively (distances Ge–Ge 241.3–243.7 pm, angles Ge–Ge–Ge 110.4 and 116.7°). The $Cl-Ge_4-Cl$ chain is centrosymmetric and has *all-anti* conformation (distances Ge–Ge 245.0 and 244.2 pm, angle Ge–Ge–Ge 116.2°).

Zusammenfassung

Das Germylen $Ph_2Ge|$ aus Ph_2GeHCl und NEt_3 schiebt in überschüssiges Ph_2GeHCl ein und bildet Polygermane $Cl(Ph_2Ge)_nH$. Diese in situ-Reaktion mit anschliessender Chlorierung zu $Cl(Ph_2Ge)_nCl$ wurde optimiert. Steigende Mengen NEt_3 erhöhen die Ausbeute an längeren Polygermanen. ¹³C-NMR Phenylsignale zeigen für C(ipso) eine Tieffeldverschiebung mit steigender Kettenlänge. Die Kristallstrukturen von $Cl(Ph_2Ge)_{3,4}Cl$ (R = 0.072 and 0.087) wurden bestimmt. Die Position des $Cl(Ph_2Ge)_4Cl$ ist durch Fehlordnung aufgespalten (Hauptmolekül 82%, Nebenmolekül 18%). In zwei kristallographisch unabhängigen Molekülen des Tri-

^{*} Mitteilung. Für XV siehe Lit. 1.

^{**} Mit Teilen der geplanten Dissertation von Karl Häberle.

germans besitzt die Cl-Ge₃-Cl-Kette einmal *anti-gauche*- und einmal *gauche-gauche*-Konformation (Abstände Ge-Ge 241.3-243.7 pm, Winkel Ge-Ge-Ge 110.4 und 116.7°). Die Cl-Ge₄-Cl-Kette ist zentrosymmetrisch und zeigt *all-anti-*Konformation (Abstände Ge-Ge 245.0 und 244.2 pm, Winkel Ge-Ge-Ge 116.2°).

Einleitung

Für Synthesen im Bereich der Polygermane [1,2] benötigen wir α, ω -difunktionelle Zwischenstufen in präparativen Mengen. Kürzlich berichteten wir über die Darstellung solcher Verbindungen durch Abspaltung von Phenylgruppen aus Ph₆Ge₂ mittels Trichloressigsäure [3]. In dieser Arbeit untersuchen wir – einer Anregung von Rivière et al. [4] folgend – die Möglichkeiten zum Aufbau funktioneller Polygermane aus Monogerman via Germylen-Einschubreaktion. Von zwei der so synthetisierten Polygermane beschreiben wir die Kristallstruktur.

Synthese

Nach [4] entsteht aus Diphenylchlorhydrogerman Ph₂GeHCl und Basen wie Triethylamin oder DBU (1,8-Diazabicyclo-[5.4.0]-undec-7-en) Diphenylgermylen Ph₂Ge | (Gl. 1), das in konzentrierter Lösung in weiteres Diphenylchlorhydrogerman unter Bildung von 1-Chlor- ω -hydropolygermanen insertiert (Gl. 2). Die Chlorhydropolygermane werden nicht isoliert, sondern nach Abtrennung des Triethylaminhydrochlorids durch radikalische Chlorierung mit CCl₄ [5] unter Zusatz von AIBN (Azobisisobutyronitril) in die entsprechenden α, ω -Dichlorgermane überführt (Gl. 3).

$$Ph_2GeHCl + NEt_3 \rightarrow Ph_2Ge | + NEt_3 \cdot HCl$$
(1)

$$(n-1)Ph_2Ge | + Ph_2GeHCl \rightarrow Cl(Ph_2Ge)_nH$$
 (2)

$$Cl(Ph_{2}Ge)_{n}H + CCl_{4} \xrightarrow{AIBN} Cl(Ph_{2}Ge)_{n}Cl + CHCl_{3}$$
(3)

Tabelle 1 zeigt, dass der Anteil an höheren Polygermanen steigt, wenn man durch Basenüberschuss für eine hohe Germylenkonzentration sorgt.

Die anfallenden Produktgemische können nach Kristallisation aus Acetonitril leicht durch Auslesen getrennt werden.

TABELLE 1

POLYGERMANE AUS GERMYLENINSERTIONS-REAKTIONEN

Molverhältnis	Ausbeute ^a an Cl(Ph ₂ Ge) _n Cl (%)				
Ph ₂ GeHCl/NEt ₃	n = 2	<i>n</i> = 3	n=4		
3/2	60	10	0		
3/3	26	40	2		
3/6	23	21	36		

" Bezogen auf eingesetztes Ph2GeHCl.

Verbindung		δ(C(1)) ipso	δ(C(2,6)) ortho	δ(C(3,5)) meta	$\delta(C(4))$ para
Cl(Ph ₂ Ge)Cl [3]		134.4	132.6	128.9	131.7
$Cl(Ph_2Ge)_2Cl[3]$		135.6	134.0	129.0	130.8
Cl(Ph ₂ Ge) ₃ Cl	ClPh ₂ Ge	137.3	133.8	128.5	130.0
1 2 / 5	Ph ₂ Ge	134.6	136.0	128.7	129.5
Cl(Ph2Ge)₄Cl ^a	ClPh ₂ Ge	138.0	133.9	128.3	129.7
	Ph ₂ Ge	134.9	136.2	128.3	129.0
I(Ph ₂ Ge) ₄ I ^a	IPh ₂ Ge	136.1	134.7	128.2	129.5
(2) -	Ph ₂ Ge	135.3	136.3	128.1	129.0
Ph(Ph ₂ Ge)Ph [6]	2	136.2	135.4	128.3	129.1
$Ph(Ph_2Ge)_2Ph[6]$		137.3	135.5	128.2	128.6
Ph(Ph,Ge),Ph [1]	Ph ₃ Ge	137.4	135.7	128.1	128.5
	Ph ₂ Ge	137.6	136.3	128.2	128.5
$Ph(Ph_2Ge)_4Ph[1]$	Ph ₃ Ge	137.7	135.7	127.9	128.4
	Ph ₂ Ge	137.7	136.5	127.9	128.2
Ph ₃ GeCl [6]	-	134.9	134.1	128.6	130.5
(Ph ₃ Ge) ₂ GePh(Cl)	Ph ₃ Ge	135.3	135.6	128.3	129.1
	PhGeCl	132.5	133.5	128.1	128.9

 13 C-NMR-PHENYLSIGNALE IN CDCl₃-LÖSUNG (δ (ppm) gegen TMS) FÜR PERPHENYLIERTE UND α,ω -DIHALOGENIERTE GERMANE

^a Zuordnung nicht völlig sicher.

¹³C-NMR-Spektren

In Tabelle 2 sind ¹³C-NMR-Spektren von perphenylierten und α, ω -dihalogenierten Germanen wiedergegeben. Es lässt sich erkennen, dass bei beiden Verbindungsgruppen die C(*ipso*)-Signale der terminalen Phenylgruppen mit steigender Kettenlänge zu tiefem Feld, die entsprechenden C(*para*)-Signale zu hohem Feld verschoben werden. Für die C(*ortho*)-Signale lässt sich kein systematischer Gang feststellen, die C(*meta*)-Resonanzen weichen nur geringfügig vom Wert für Benzol (128.5 ppm) ab.

Die C(*ipso*)-Signale der zentralen GePh₂-Gruppen werden beim Übergang von α, ω -Dihalogenierung zu Perphenylierung deutlich zu tiefem Feld verschoben. Die übrigen Signale bleiben annähernd konstant.

Röntgendaten

Tabelle 3 enthält die Kristalldaten der Verbindungen $Cl(Ph_2Ge)_2Cl$, $Cl(Ph_2-Ge)_3Cl$ und $Cl(Ph_2Ge)_4Cl$. Die Kristallstrukturen von $Cl(Ph_2Ge)_3Cl$ und $Cl(Ph_2Ge)_4Cl$ wurden bestimmt und bis zu *R*-Werten von 0.072 bzw. 0.087 verfeinert. In den Tabellen 4 und 5 sind Lage- und Temperaturparameter wiedergegeben.

Die Struktur des Tetragermans ist fehlgeordnet; es existieren zwei alternative Moleküllagen mit einem Besetzungsverhältnis von etwa 82/18. Vom Digerman Cl(Ph₂Ge)₂Cl konnten trotz zahlreicher Versuche keine Einkristalle erhalten werden.

	KRISTALLDATEN VON CI(P)	1,Ge),CI, Cl	(Ph ₃ Ge) ₂ Cl und	Cl(Ph_Ge)_Cl
--	-------------------------	--------------	--	--------------

	Cl(Ph ₂ Ge) ₂ Cl ^{<i>a</i>}	Cl(Ph ₂ Ge) ₃ Cl	Cl(Ph ₂ Ge) ₄ Cl
Kristallsystem	triklin	triklin	monoklin
Raumgruppe	P1 oder $P\overline{1}$	P1	$P2_1/c$
a (pm)		1013.2(1)	996.2(2)
b (pm)		1016.4(1)	1035.0(3)
c (pm)		1835.8(2)	2064.8(4)
α (°)		79.74(1)	
β(°)		76.51(1)	90.54(1)
γ (°)		65.03(1)	
$V \times 10^{-6} (\text{pm}^3)$	1170	1660	2129
Molmasse	524.51	751.32	978.12
Ζ	2	2	2
$d_{\rm rönt} ({\rm g} {\rm cm}^{-3})$	1.49	1.50	1.53
$d_{\rm exp} ({\rm g} {\rm cm}^{-3})$	1.49	1.50	1.50
$\mu (cm^{-1})^{b}$	27.34	28.14	28.86

^a Daten aus Filmaufnahmen an einem verzwillingten Individuum. ^b Für Mo-K_a-Strahlung.

Struktur des Cl(Ph₂Ge)₃Cl

Die Struktur des Trigermans enthält zwei unabhängige Moleküle. Figur 1 zeigt diese in der Elementarzelle; Tabelle 6 fasst die relevanten Abstände und Winkel zusammen.

Die Konformation der n-Pentan-analogen Cl-Ge₃-Cl-Kette ist in beiden Molekülen unterschiedlich: *anti-gauche* in Molekül 1 (+146.1 und +49.3°) und *gauche-gauche* in Molekül 2 (-58.3 und -49.2°) [7]. Während die Phenylsubstituenten im Molekül 2 gut gestaffelt stehen (Torsionswinkel $60 \pm 10^{\circ}$), sind im

Fig. 1. Unabhängige Cl(Ph₂Ge)₃Cl-Moleküle in der Elementarzelle.

Molekül	1					
Atom	x		у	Z		U
Ge(1)	0.2	870(1)	0.4091(1)	0.78	650(7)	
Ge(2)	0.5	4360	0.38340	0.75	420	
Ge(3)	0.7	035(1)	0.1432(1)	0.71	481(7)	
Cl(1)	0.1	898(4)	0.5505(6)	0.87	(85(2)	
Cl(3)	0.6	015(3)	0.1076(3)	0.63	511(1)	
càn	0.1	710(11)	0.5080(10)	0.70	74(5)	0.046(1)
C(12)	0.2	321(14)	0.4993(12)	0.63	19(6)	0.058(2)
cìisí	0.1	501(18)	0.5516(16)	0.57	(65(8)	0.073(3)
C(14)	0.0	039(13)	0.6227(12)	0.59	66(6)	0.058(2)
càs	-0.0	670(16)	0.6345(14)	0.67	21(7)	0.065(2)
cìnó	0.0	187(14)	0.5792(13)	0.72	71(7)	0.060(2)
C(17)	0.2	554(12)	0.2336(11)	0.82	61(6)	0.054(2)
C(18)	0.2	249(15)	0.1617(14)	0.77	196(7)	0.065(2)
C(19)	0.2	021(20)	0.0381(19)	0.80	06(9)	0.081(3)
C(110)	0.2	184(23)	-0.0329(22)	0.87	(52(11)	0.090(4)
can	0.2	450(21)	0.0358(19)	0.92	217(10)	0.084(4)
C(112)	0.2	604(19)	0 1694(17)	0.92	M5(9)	0.077(3)
C(21)	0.5	584(10)	0.5401(9)	0.67	(81(5)	0.039(1)
C(21)	0.5	103(12)	0.5146(11)	0.60	01(5)	0.050(2)
C(22)	0.0	186(15)	0.5140(11)	0.54	178(7)	0.050(2)
C(23)	0.0	758(15)	0.7640(14)	0.54	(92(7)	0.001(2)
C(24)	0.5	730(15)	0.7040(14)	0.50	152(7)	0.003(2)
C(26)	0.5	214(13) 156(12)	0.787(13)	0.6	NG(7)	0.001(2)
C(20)	0.5	217(10)	0.3835(0)	0.05	131(5)	0.049(1)
C(27)	. 0.5	744(10)	0.3035(3)	0.0	10(9)	0.042(1)
C(20)	0.5	/00(19)	0.3377(17)	0.91	(10(0)	0.070(3)
C(29)	0.0	400(22)	0.3230(20)	0.9	(27(10) (10)	0.000(4)
C(210)	0.7	077(10)	0.3491(10)	0.9.	990(0) 960(11)	0.073(3)
C(211)	0.8	204(23)	0.3994(21)	0.80	NO2(11)	0.092(4)
C(212)	0.7	485(10)	0.4100(14)	0.84	(7)	0.000(2)
C(31)	0.9	120(12)	0.1122(10)	0.00	944(5) 17((()	0.044(1)
C(32)	1.0	(13)	-0.0327(11)	0.63	0/0(0)	0.053(2)
C(33)	1.1	522(17)	-0.0610(16)	0.61	10/(8)	0.070(3)
C(34)	1.1	953(16)	0.0532(14)	0.58	329(7)	0.066(2)
C(35)	1.0	911(16)	0.1965(15)	0.55	935(8)	0.067(2)
C(36)	0.9	50/(14)	0.2240(12)	0.63	943(6)	0.058(2)
C(37)	0.7	115(12)	-0.0038(11)	0.79	979(5)	0.049(2)
C(38)	0.7	992(17)	-0.0281(16)	0.84	199(8)	0.071(3)
C(39)	0.8	006(22)	-0.1253(20)	0.91	130(10)	0.088(4)
C(310)	0.7	139(21)	-0.2083(19)	0.92	204(10)	0.083(4)
C(311)	0.6	322(22)	-0.1861(20)	0.8	/01(10)	0.086(4)
C(312)	0.6	257(15)	-0.0867(14)	0.80)93(7)	0.062(2)
Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂
Ge(1)	0.0329(4)	0.0594(5)	0.0462(4)	-0.0089(3)	-0.0101(3)	-0.0205(3)
Ge(2)	0.0340(3)	0.0414(4)	0.0404(4)	-0.0020(3)	-0.0124(3)	-0.0198(3)
Ge(3)	0.0348(4)	0.0402(4)	0.0419(4)	-0.0000(3)	-0.0108(3)	-0.0201(3)
Cl(1)	0.064(1)	0.128(3)	0.095(2)	-0.065(2)	-0.009(1)	-0.019(2)
C1(3)	0.068(1)	0.066(1)	0.050(1)	0.0035(9)	-0.023(1)	-0.044(1)

LAGE- UND TEMPERATURPARAMETER VON Cl(Ph $_2 \mathrm{Ge})_3 \mathrm{Cl}$ MIT STANDARDABWEI-CHUNGEN

(fortgesetzt)

160		

	TABELLE 4	(Fortsetzung)
--	-----------	---------------

Atom	x		у	Z		U
Ge(4)	0.71	12(1)	0.5144(1)	0.214	60(7)	
Ge(5)	0.44	66(1)	0.6181(1)	0.255	50(6)	
Ge(6)	0.33	84(1)	0.8624(1)	0.295	18(7)	
Cl(4)	0.77	'54(4)	0.6533(6)	0.120	0(2)	
Cl(6)	0.46	i59(5)	0.8696(3)	0.375	0(2)	
C(41)	0.82	.49(13)	0.4980(12)	0.292	4(6)	0.054(2)
C(42)	0.84	32(13)	0.6155(12)	0.308	7(6)	0.057(2)
C(43)	0.90	98(17)	0.6060(15)	0.367	'3(8)	0.071(3)
C(44)	0.96	25(15)	0.4674(14)	0.410	5(7)	0.064(2)
C(45)	0.94	11(18)	0.3555(16)	0.394	6(8)	0.072(3)
C(46)	0.87	/53(15)	0.3685(13)	0.334	5(7)	0.062(2)
C(47)	0.77	/50(15)	0.3238(13)	0.176	2(7)	0.062(2)
C(48)	0.67	/69(18)	0.2566(16)	0.183	2(8)	0.073(3)
C(49)	0.71	59(24)	0.1250(22)	0.159	9(11)	0.095(5)
C(410)	0.87	71(33)	0.0595(30)	0.123	1(15)	0.116(7)
C(411)	0.96	25(28)	0.1036(26)	0.114	7(12)	0.102(5)
C(412)	0.91	94(21)	0.2417(19)	0.144	2(10)	0.084(4)
C(51)	0.42	29(9)	0.4809(8)	0.341	0(4)	0.036(1)
C(52)	0.49	00(11)	0.4628(10)	0.403	4(5)	0.048(1)
C(53)	0.49	77(14)	0.3517(13)	0.458	4(7)	0.060(2)
C(54)	0.43	21(15)	0.2586(14)	0.456	3(7)	0.062(2)
C(55)	0.36	23(15)	0.2747(14)	0.398	0(7)	0.063(2)
C(56)	0.35	47(14)	0.3871(13)	0.341	0(7)	0.060(2)
C(57)	0.34	44(9)	0.6280(8)	0.177	5(4)	0.035(1)
C(58)	0.41	40(14)	0.6190(13)	0.099	7(7)	0.061(2)
C(59)	0.33	73(17)	0.6325(16)	0.043	2(8)	0.070(2)
C(510)	0.18	64(16)	0.6600(15)	0.062	9(8)	0.067(2)
C(511)	0.11	58(16)	0.6675(14)	0.139	6(7)	0.066(2)
C(512)	0.19	88(13)	0.6538(12)	0.194	3(6)	0.054(2)
C(61)	0.34	21(10)	1.0110(10)	0.213	9(5)	0.044(1)
C(62)	0.41	76(15)	0.9745(13)	0.141	3(7)	0.061(2)
C(63)	0.41	35(18)	1.0887(17)	0.082	3(8)	0.075(3)
C(64)	0.33	91(19)	1.2317(17)	0.097	8(9)	0.077(3)
C(65)	0.27	76(20)	1.2634(18)	0 168	7(9)	0.079(3)
C(66)	0.27	26(17)	1.1573(15)	0 224	8(8)	0.068(2)
C(67)	0.14	18(12)	0.9128(10)	0 351	6(5)	0.048(1)
C(68)	0.02	33(15)	0.9567(13)	0.311	6(7)	0.040(1)
C(69)	-0.	1225(19)	0.9969(17)	0.347	9(9)	0.078(3)
Ciein	-0.	1619(21)	0.9907(19)	0 423	2(10)	0.084(4)
C(611)	-0.	0470(22)	0.9423(20)	0.464	6(10)	0.004(4)
C(612)	0.10	51(18)	0.9045(16)	0.428	б(10) б(8)	0.074(3)
Atom	U ₁₁	U ₂₂	U ₃₃	U ₂₃		U ₁₂
Ge(4)	0.0286(4)	0.0819(7)	0.0457(4)	-0.0023(4)	-0.0121(3)	-0.0258(4)
Ge(5)	0.0303(3)	0.0403(3)	0.0392(4)	-0.0020(2)	-0.0121(3)	-0.0230(4)
Ge(6)	0.0532(5)	0.0392(4)	0.0440(4)	-0.0004(3)	-0.0107(2)	-0.0100(3)
	0.060(1)	0.100(4)	0.077(1)	0.000-(3)	0.0177(3)	-0.0133(3)
Cl(4)	0.00900	() (X 4/4)	00///11	111/12/2022		

Molekül 1 (hauptsächlich um die Bindung Ge(1)-Ge(2)) starke Abweichungen von der Idealanordnung (Torsionswinkel bis zu 26°) festzustellen.

.

Die Ge-Ge-Abstände sind mit 241.3 bis 243.7 pm deutlich kürzer als im

LAGE- UND TEMPERATURPARAMETER VON Cl(Ph $_2$ Ge) $_4$ Cl MIT STANDARDABWEI-CHUNGEN

Hauptmo	olekül (82%)					
Atom	x		у	z		U
Ge(1)	0.413	34(3)	0.6173(3)	0.635	8(1)	
Ge(2)	0.553	39(1)	0.5194(1)	0.5524	43(8)	
	0.553	35(7)	0.6258(6)	0.714	5(3)	0.066(2)
C(11)	0.262	21(15)	0.5189(14)	0.673	5(7)	0.052(3)
C(12)	0.286	50(16)	0.4060(15)	0.708	7(7)	0.060(4)
C(13)	0.18	59(17)	0.3403(17)	0.740	3(8)	0.070(4)
C(14)	0.04	72(19)	0.3867(18)	0.734	3(9)	0.078(5)
C(15)	0.020	51(18)	0.5024(17)	0.701	4(8)	0.074(5)
CII	0.130	06(16)	0.5650(15)	0.667	3(7)	0.058(4)
C(17)	0.34	74(14)	0.7890(14)	0.621	1(6)	0.050(3)
C(18)	0.33	34(17)	0.8340(17)	0.558	4(8)	0.073(5)
c(19)	0.272	25(22)	0.9629(22)	0.548	5(11)	0.102(7)
cino	0.23	16(18)	1.0285(17)	0.598	0(9)	0.074(5)
C(111)	0.242	27(19)	0.9826(18)	0.658	9(9)	0.081(5)
$\dot{c(112)}$	0.29	96(15)	0.8597(15)	0.673	5(7)	0.057(4)
C(21)	0.60	98(14)	0.3530(13)	0.590	6(6)	0.046(3)
C(22)	0.52	66(16)	0.2492(15)	0.597	8(7)	0.061(4)
C(23)	0.57	73(17)	0.1342(16)	0.625	6(8)	0.068(4)
C(24)	0.71	26(18)	0.1270(16)	0.645	2(8)	0.069(4)
C(25)	0.79	34(18)	0.2357(18)	0.637	8(8)	0.079(5)
cizó	0.74	54(18)	0.3481(17)	0.611	1(8)	0.074(5)
C(27)	0.71	62(16)	0.6303(15)	0.538	5(7)	0.063(4)
C(28)	0.80	25(18)	0.5932(16)	0.489	9(8)	0.070(4)
C(29)	0.92	53(20)	0.6602(20)	0.486	5(9)	0.090(6)
C(210)	0.95	12(18)	0.7605(17)	0.524	2(9)	0.077(5)
c(211)	0.86	59(19)	0.8015(18)	0.569	8(8)	0.078(5)
C(212)	0.73	89(18)	0.7414(17)	0.576	9(8)	0.077(5)
Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	U ₁₂
Ge(1)	0.034(1)	0.037(2)	0.035(1)	- 0.007(1)	0.003(1)	-0.005(1)
Ge(2)	0.0215(8)	0.044(1)	0.0361(9)	-0.0013(8)	-0.0012(6)	-0.0025(8)
Nebenm	olekül (18%)	<u></u>	· · · · · · · · · · · · · · · · · · ·		. <u></u>	
Atom	x		<i>y</i>	Ζ		U
Ge(1)	0.371	9(16)	0.5831(16)	0.629	6(9)	
Ge(2)	0.559	4(8)	0.5533(7)	0.455	8(3)	
Cl(1)	0.562	5(31)	0.5822(32)	0.708	7(14)	0.061(8)
Phenylg	ruppen nicht a	ufgelöst				
Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U ₁₃	<i>U</i> ₁₂
Ge(1)	0.049(10)	0.031(7)	0.041(6)	~0.014(5)	-0.001(6)	-0.024(5)
Ge(2)	0.050(5)	0.028(4)	0.024(3)	-0.001(3)	0.009(3)	-0.007(3)

perphenylierten Trigerman Ph_8Ge_3 (243.8 und 244.1 pm) [8]. Die Ge-Ge-Ge-Bindungswinkel sind im gauche-gauche-Molekül (116.7°) und noch stärker in antigauche-Molekül (110.4°) gegenüber Ph_8Ge_3 (121.3°) gestaucht. Beide Effekte lassen sich mit dem verminderten Platzbedarf eines Chlor-Atoms gegenüber einer Phenyl-

ABSTÄNDE (pm) UND WINKEL (Grad) IM Cl(Ph2Ge)3Cl

Molekül 1	Molekül 2
Ge(1)-Ge(2) 243.7(2)	Ge(4)-Ge(5) 241.3(2)
Ge(2)-Ge(3) 241.9(1)	Ge(5)-Ge(6) 242.3(2)
Ge(1)-Cl(1) 218.7(6)	Gc(4)-Cl(4) 219.2(6)
Ge(3)-Cl(3) 219.4(4)	Ge(6)-Cl(6) 219.6(6)
Ge-C 195	Ge-C 195
Cl(1)-Ge(1)-Ge(2) 104.4(2)	Cl(4)-Ge(4)-Ge(5) 109.9(1)
Ge(1)-Ge(2)-Ge(3) 110.4(1)	Ge(4)-Ge(5)-Ge(6) 116.7(1)
Ge(2)-Ge(3)-Cl(3) 105.8(1)	Ge(5)-Ge(6)-Cl(6) 108.1(1)
Ge-Ge-C 111.9	Ge-Ge-C 109.8
CI-Ge-C 106.3	Cl-Ge-C 105.8
C-Ge-C 109.5	C-Ge-C 111.2
Cl(1)Ge(1)-Ge(2)Ge(3) + 146.1(1)	Cl(4)Ge(4)-Ge(5)Ge(6) - 58.3(2)
Ge(1)Ge(2)-Ge(3)Cl(3) + 49.3(1)	Ge(4)Ge(5)-Ge(6)Cl(6) - 49.2(2)
verbleibende Torsionswinkel um	
Ge(1)-Ge(2) 26 bis 89	Ge(4)-Ge(5) 54 bis 66
Ge(2)-Ge(3) 43 bis 75	Ge(5)-Ge(6) 49 bis 72

gruppe erklären. Der geringe Platzbedarf des Chloratoms äussert sich auch in den Ge-Ge-Cl-Winkeln, die im Mittel kleiner als der Tetraederwert sind. Die Ge-Cl Abstände liegen mit 218.7-219.6 ppm im Normalbereich [9].

Fig. 2. Gefundenes $Cl(Ph_2Ge)_4Cl$ -Molekül (Hauptmolekül, 'zentrosymmetrisch ergänzte Atome).

162

ABSTÄNDE (pm) UND WINKEL (Grad) IM Cl(Ph2Ge)4Cl

Ge(1)-Ge(2) 245.0(4) Ge(2)-Ge(2') 244.2(3) Ge(1)-Cl(1) 213.2(8) Cl(1)-Ge(1)-Ge(2) 100.3(2) Ge(1)-Ge(2)-Ge(2') 116.2(1)

Ge-C 197

Ge-Ge-C 107.8 CI-Ge-C 105.1 C-Ge-C 107.8

Cl(1)Ge(1)-Ge(2)Ge(2') 179.2(2) Ge(1)Ge(2)-Ge(2')Ge(1') 180

verbleibende Torsionswinkel um Ge(1)–Ge(2) 52 bis 68 Ge(2)–Ge(2') 56 bis 63

Struktur des Cl(Ph₂Ge)₄Cl

Das gefundene zentrosymmetrische Molekül ist in Figur 2 abgebildet; wichtige Abstände und Winkel sind in Tabelle 7 wiedergegeben.

Die Cl-Ge₄Cl-Kette liegt in der *all-anti*-Konformation vor mit Phenylsubstituenten, die innerhalb eines Toleranzbereichs von $\pm 8^{\circ}$ gut gestaffelt stehen. Die Ge-Ge-Bindungen sind mit 245.0 und 244.2 pm länger als im Cl(Ph₂Ge)₃Cl, aber kürzer als im perphenylierten Tetragerman (246.1–246.3 pm) [8]. Der Ge-Ge-Ge-Winkel ist mit 116.2° etwas weniger aufgeweitet als im Ph₁₀Ge₄ (117.8°). Der kurze Ge-Cl-Abstand (213.2 pm) und der gestauchte Ge-Ge-Cl-Winkel (100.3°) werden durch die Fehlordnung des Kristalls vorgetäuscht (s. Exp. Teil).

Experimenteller Teil

Ausgangschemikalien und Vergleichsproben

Ph₂GeHCl [10]; Ph₄Ge₂Cl₂ [3]; Ph₈Ge₄I₂ [11]; (Ph₃Ge)₂GePh(Cl) [12]. C/Hund Cl-Analysen im mikroanalytischen Labor des Inst. für Organische Chemie der Universität Mainz; Ge-Bestimmung durch Neutronenaktivierung im MPI für Chemie, Mainz. Massenspektren: Spektrometer CH4 der Fa. Varian-Mat; Elektronenstossionisierung 70 eV; Simulation der Isotopenmuster mit dem Programm PEEKS [13]. NMR-Spektren; Spektrometer WP 80 DS der Fa. Bruker. Schwingungsspektren: MIR, Proben als KBr-Presslinge, Spectrophotometer IR 4220 der Fa. Beckman; FIR, Proben als Polyethylenpresslinge, Gerät Bruker IFS 113. Röntgenbeugung: Kappa-Diffraktometer CAD 4 der Fa. Enraf-Nonius; Rechnungen im Rechenzentrum der Univ. Mainz (HB-DPS-8/70) mit MULTAN-78 [14], SHELX-76 [15] und lokalen Programmen. Dichtebestimmung: Schwebemethode in Thoulet'scher Lösung.

Darstellung von Cl(Ph₂Ge)_{2,3,4}Cl

Zu 1.58 g (6.0 mmol) Diphenylchlorhydrogerman in 1 ml Toluol wird rasch die nach Tabelle 1 berechnete Menge Triethylamin gegeben. Das sofort gallertartig erstarrende Gemisch wird im Soxhlet mit Diethylether extrahiert, der Extrakt filtriert und eingeengt. Nach vierstündigem Kochen des Rückstands mit 5 ml CCl_4

	Cl(Ph ₂ Ge) ₂ Cl	$Cl(Ph_2Ge)_3Cl_3$	Cl(Ph ₂ Ge) ₄ Cl
Summenformel	C ₂₄ H ₂₀ Ge ₂ Cl ₂	C ₃₆ H ₃₀ Ge ₃ Cl ₂	C48H40Ge4Cl2
Molmasse	524.51	751.32	978.12
Gehalt Ge gef. (ber.) (%)	27. 9	29.3	29.5
	(27.68)	(28.98)	(29.68)
Gehalt C gef. (ber.) (%)	54.7	57.1	59.1
	(54.96)	(57.55)	(58.94)
Gehalt H gef. (ber.) (%)	3.7	4.0	4.0
	(3.84)	(4.02)	(4.12)
Gehalt Cl gef. (ber.) (%)	13.5	9.5	6.8
	(13.52)	(9.44)	(7.25)
Fp. (°C)	133-135	125-127	160
IR ν (Ge–Cl) (cm ⁻¹) ^{<i>a</i>}	375 m	370 s	380 s

ANALYSENDATEN

^{*a*} Ph₂GeGePh(Cl)GePh₂ 369m cm⁻¹.

und einer Spatelspitze AIBN wird abermals eingeengt und in heissem Acetonitril aufgenommen. Aus dieser Lösung fallen die Titelverbindungen in typischen Kristallformen aus, die durch Auslesen (Zeitbedarf ca. 20 min) leicht zu trennen sind (Cl(Ph₂Ge)₂Cl: kompakte Quader; Cl(Ph₂Ge)₃Cl: dünne, sechseckige Plättchen; Cl(Ph2Ge)4Cl; dünne, rechteckige Plättchen). Nochmaliges Umkristallisieren aus Acetonitril liefert analysenreine Substanzen (Analysendaten in Tabelle 8).

Einkristalle des Tri- und Tetragermans entstehen beim langsamen Eindunsten der Lösungen in Acetonitril, Cl(Ph₂Ge)₂Cl kristallisiert, auch aus zahlreichen anderen Lösungsmitteln, stets verzwillingt.

Massenspektren

Cl(Ph₂Ge)₂Cl (70°C). Ph₄Ge₂Cl₂⁺ 524 (5%), Ph₃Ge⁺ 305 (100%) Ph₂GeCl 263 (76%) Ph₂Ge⁺ 228 (87%).

Cl(Ph₂Ge)₃Cl (120°C). Ph₆Ge₃Cl₂⁺ 725 (2%), Ph₆Ge₃Cl⁺ 715 (1%); Ph₅Ge₃Cl⁺ 638 (3%), Ph₅Ge₂⁺ 531 (4%), Ph₄Ge₂Cl⁺ 489 (1%), Ph₄Ge₂⁺ 454 (23%), Ph₃Ge₂Cl⁺ 412 (2%), Ph₃Ge₂⁺ 377 (1%) Ph₃Ge⁺ 305 (100%), Ph₂Ge⁺ 228 (5%).

 $Cl(Ph_2Ge)_4Cl$ (190°C). kein M^+ , $Ph_7Ge_4Cl_2^+$ 901 (7%), $Ph_6Ge_4^+$ 754 (3%), $Ph_6Ge_3Cl^+$ 715 (32%), $Ph_6Ge_3^+$ 680 (1%), $Ph_5Ge_3^+$ 603 (1%) $Ph_5Ge_2^+$ 531 (51%), Ph₄Ge₂⁺ 454 (17%), Ph₃Ge₂⁺ 377 (1%) Ph₃Ge⁺ 305 (100%), Ph₂GeCl 263 (25%), Ph₂Ge⁺ 228 (20%).

Strukturanalyse von $Cl(Ph_2Ge)_3Cl$ und $Cl(Ph_2Ge)_4Cl$

Tabelle 9 enthält Angaben über die untersuchten Kristalle, die Gewinnung der Intensitätsdaten und das Ergebnis der Verfeinerung. Die Schweratomlagen wurden mit MULTAN-78 bestimmt, die Cl- und C-Positionen durch Differenz-Fouriersynthesen.

Bei der Verfeinerung der Struktur des Cl(Ph₂Ge)₄Cl erschienen in der Nähe der Ge- und Cl-Positionen zusätzliche hohe Maxima, die einem zweiten, fehlgeordneten ClGe₄Cl-Gerüst zugeordnet wurden. Zur Bestimmung des relativen Anteils an fehlgeordneten Molekülen wurden die Schweratom-Besetzungsfaktoren des "Hauptmoleküls" im Bereich von 0.86 bis 0.74 in 0.02-Schritten gesenkt (Be-

	Cl(Ph ₂ Ge) ₃ Cl	Cl(Ph ₂ Ge) ₄ Cl
Kristallform	sechseckiges	rechteckiges
	Plättchen	Plättchen
Kristallausmasse (mm)	1.7×0.74×0.26	$0.26 \times 0.18 \times 0.07$
Messbereich ^{<i>a</i>} bis sin ϑ/λ	0.00662	0.00617
(pm^{-1})		
Intensitätsverlust (%)	14 ^b	1 ^c
unabhängige Reflexe	8002	4171
Reflexe mit $I > 2\sigma(I)$	7183	2099
verfeinerte Parameter	378	141
Reflexe pro Parameter	19.0	14.9
R	0.072	0.087
gewichtetes R ^d	0.093	0.1089
Gewichts-g ^d	0.0256	0.0013

ÜBERBLICK 711 DER	STRUKTURBESTIMMUNGEN AM CI(Ph	Ge) CI UND	Cl(Ph)	Ge) Cl
UDERDLICK LU DEN	SINCKICKDEDIIMMOLOGIA IM CAIM	JOCHOL OLD		,00,401

^a Monochromatisierte Mo- K_{α} -Strahlung, $\omega/2\vartheta$ -Modus. ^b Unregelmässiger Intensitätsabfall, Direktanpassung an Standardreflexe. ^c Lineare Korrektur. ^d Gewichtssetzung gemäss $w = k/(\sigma^2(F) + gF^2)$.

setzungsfaktoren des "Nebenmoleküls" entsprechend von 0.14 bis 0.26 erhöht) und in jeweils 4 Cyclen verfeinert. Der günstigste *R*-Wert und zugleich die beste Übereinstimmung einander entsprechender Temperaturfaktoren ergab sich bei einem Verhältnis der Besetzungsfaktoren von 0.82/0.18. Die zum "Nebenmolekül" gehörenden Phenylgruppen waren nur teilweise aufgelöst und konnten nicht vollständig lokalisiert werden. Die beiden Cl-Positionen liegen so nahe beieinander, dass eine gegenseitige Lageverfälschung anzunehmen ist. Weissenberg-Aufnahmen von mehreren Kristallen des Cl(Ph₂Ge)₄Cl zeigten stets leicht diffuse Reflexe und bestätigen damit die gefundene Fehlordnung.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (Projekt Nr. 109/6-3) und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen.

Literatur

- 1 M. Dräger und D. Simon, J. Organomet. Chem., 306 (1986) 183.
- 2 M. Dräger und K. Häberle, J. Organomet. Chem., 280 (1985) 183.
- 3 D. Simon, K. Häberle und M. Dräger, J. Organomet. Chem., 267 (1984) 133.
- 4 P. Rivière, A. Castel, D. Guyot und J. Satgé, J. Organomet. Chem., 290 (1985) C15; S. Collins, S. Murakami, J.T. Snow und S. Masamune, Tetrahedron Lett., (1985) 1281.
- 5 P. Rivière, A. Castel, J. Satgé und D. Guyot, J. Organomet. Chem., 264 (1984) 193.
- 6 M.J. Vaickus und D.G. Anderson, Org. Magn. Resonance, 14 (1980) 278.
- 7 J. Dale, Stereochemie und Konformationsanalyse, Verlag Chemie, Weinheim-New York, 1978, S. 76.
- 8 S. Roller, D. Simon und M. Dräger, J. Organomet. Chem., 301 (1986) 27.
- 9 Cambridge Crystallographic Data Base, Cambridge, update Sept. 1984.
- 10 P. Rivière und J. Satgé, Bull. Soc. Chim., (1967) 4039.
- 11 W.P. Neumann und K. Kühlein, Liebigs Ann. Chem., 683 (1965) 1.
- 12 D. Simon, Dissertation, Mainz 1982.
- 13 B. Mattson und E. Carberry, J. Chem. Educ., 50 (1973) 511.
- 14 P. Main, York, 1978.
- 15 G. Sheldrick, Cambridge, 1976.